Network epidemic models with two levels of mixing.
نویسندگان
چکیده
The study of epidemics on social networks has attracted considerable attention recently. In this paper, we consider a stochastic SIR (susceptible-->infective-->removed) model for the spread of an epidemic on a finite network, having an arbitrary but specified degree distribution, in which individuals also make casual contacts, i.e. with people chosen uniformly from the population. The behaviour of the model as the network size tends to infinity is investigated. In particular, the basic reproduction number R(0), that governs whether or not an epidemic with few initial infectives can become established is determined, as are the probability that an epidemic becomes established and the proportion of the population who are ultimately infected by such an epidemic. For the case when the infectious period is constant and all individuals in the network have the same degree, the asymptotic variance and a central limit theorem for the size of an epidemic that becomes established are obtained. Letting the rate at which individuals make casual contacts decrease to zero yields, heuristically, corresponding results for the model without casual contacts, i.e. for the standard SIR network epidemic model. A deterministic model that approximates the spread of an epidemic that becomes established in a large population is also derived. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations work well, even for only moderately sized networks, and that the degree distribution and the inclusion of casual contacts can each have a major impact on the outcome of an epidemic.
منابع مشابه
Interval estimates for epidemic thresholds in two-sex network models.
Epidemic thresholds in network models of heterogeneous populations characterized by highly right-skewed contact distributions can be very small. When the population is above the threshold, an epidemic is inevitable and conventional control measures to reduce the transmissibility of a pathogen will fail to eradicate it. We consider a two-sex network model for a sexually transmitted disease which...
متن کاملEstimating Within-School Contact Networks to Understand Influenza Transmission
Many epidemic models approximate social contact behavior by assuming random mixing within mixing groups (e.g., homes, schools, and workplaces). The effect of more realistic social network structure on estimates of epidemic parameters is an open area of exploration. We develop a detailed statistical model to estimate the social contact network within a high school using friendship network data a...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کاملNetworks and epidemic models.
Networks and the epidemiology of directly transmitted infectious diseases are fundamentally linked. The foundations of epidemiology and early epidemiological models were based on population wide random-mixing, but in practice each individual has a finite set of contacts to whom they can pass infection; the ensemble of all such contacts forms a 'mixing network'. Knowledge of the structure of the...
متن کاملInsufficiency of the Uniform Mixing Assumption in Epidemic Models: A Cautionary Tale
Sensitivity analysis and experimental design are recognized tools for validating and verifying simulation based models of social systems. However, these efforts tend to be focused on understanding how uncertainty about the accuracy of data input in a given model's parameters propagates to the outputs, rather than evaluating how accurately a model's fundamental structure reflects the particulars...
متن کاملNetwork-based analysis of stochastic SIR epidemic models with random and proportionate mixing.
In this paper, we outline the theory of epidemic percolation networks and their use in the analysis of stochastic susceptible-infectious-removed (SIR) epidemic models on undirected contact networks. We then show how the same theory can be used to analyze stochastic SIR models with random and proportionate mixing. The epidemic percolation networks for these models are purely directed because und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences
دوره 212 1 شماره
صفحات -
تاریخ انتشار 2008